ट्रिगोनोमेट्री उदाहरण

व्युत्क्रम ज्ञात कीजिये y=|x-1|+2
चरण 1
चर को एकदूसरे के साथ बदलें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.4.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4.2.2
और जोड़ें.
चरण 2.4.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.4.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.4.1
फिर से लिखें.
चरण 2.4.4.2
शून्य जोड़कर सरल करें.
चरण 2.4.4.3
वितरण गुणधर्म लागू करें.
चरण 2.4.4.4
को से गुणा करें.
चरण 2.4.5
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.5.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4.5.2
और जोड़ें.
चरण 2.4.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
Replace with to show the final answer.
चरण 4
सत्यापित करें कि क्या , का व्युत्क्रम है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्युत्क्रम का डोमेन मूल फंक्शन का परास और इसके विपरीत है. और का डोमेन और परास ज्ञात करें और उनकी तुलना करें.
चरण 4.2
की सीमा ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
श्रेणी सभी मान्य मानों का सेट है. परिसर पता करने के लिए ग्राफ का प्रयोग करें.
मध्यवर्ती संकेतन:
चरण 4.3
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4.4
चूँकि का डोमेन की परास के बराबर नहीं है, तो , का व्युत्क्रम नहीं है.
कोई व्युत्क्रम नहीं
कोई व्युत्क्रम नहीं
चरण 5