समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
को पहचान के आधार पर से बदलें.
चरण 3
चरण 3.1
वितरण गुणधर्म लागू करें.
चरण 3.2
को से गुणा करें.
चरण 3.3
को से गुणा करें.
चरण 4
में से घटाएं.
चरण 5
बहुपद को पुन: व्यवस्थित करें.
चरण 6
को से प्रतिस्थापित करें.
चरण 7
चरण 7.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
चरण 7.1.1
में से का गुणनखंड करें.
चरण 7.1.2
को जोड़ के रूप में फिर से लिखें
चरण 7.1.3
वितरण गुणधर्म लागू करें.
चरण 7.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 7.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 7.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 7.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 8
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 9
चरण 9.1
को के बराबर सेट करें.
चरण 9.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 10
चरण 10.1
को के बराबर सेट करें.
चरण 10.2
के लिए हल करें.
चरण 10.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 10.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 10.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 10.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 10.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.2.2.1.2
को से विभाजित करें.
चरण 10.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 10.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 11
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 12
को से प्रतिस्थापित करें.
चरण 13
को हल करने के लिए प्रत्येक हल सेट करें.
चरण 14
चरण 14.1
कोज्या की सीमा है. चूँकि इस श्रेणी में नहीं आता है, इसलिए कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
चरण 15
चरण 15.1
कोज्या की सीमा है. चूँकि इस श्रेणी में नहीं आता है, इसलिए कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं