ट्रिगोनोमेट्री उदाहरण

xを解きます sin(x)+ 3cos(x)<0 का वर्गमूल
चरण 1
समीकरण के प्रत्येक पद को से विभाजित करें.
चरण 2
को में बदलें.
चरण 3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2
को से विभाजित करें.
चरण 4
अलग-अलग भिन्न
चरण 5
को में बदलें.
चरण 6
को से विभाजित करें.
चरण 7
को से गुणा करें.
चरण 8
असमानता के दोनों पक्षों से घटाएं.
चरण 9
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 10
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.1
का सटीक मान है.
चरण 11
दूसरे और चौथे चतुर्थांश में स्पर्शरेखा फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, तीसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 12
दूसरा हल निकालने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
को में जोड़ें.
चरण 12.2
का परिणामी कोण के साथ धनात्मक और कोटरमिनल है.
चरण 13
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 13.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 13.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 13.4
को से विभाजित करें.
चरण 14
धनात्मक कोण प्राप्त करने के लिए प्रत्येक ऋणात्मक कोण में जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 14.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 14.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 14.3
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 14.3.1
और को मिलाएं.
चरण 14.3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 14.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 14.4.1
को के बाईं ओर ले जाएं.
चरण 14.4.2
में से घटाएं.
चरण 14.5
नए कोणों की सूची बनाएंं.
चरण 15
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 16
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
चरण 17
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 18
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
चरण 19
चूँकि अंतराल के भीतर कोई संख्या नहीं है, इसलिए इस असमानता का कोई हल नहीं है.
कोई हल नहीं