ट्रिगोनोमेट्री उदाहरण

चरण 1
सभी अभिव्यक्तियों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
में से का गुणनखंड करें.
चरण 2.1.2
में से का गुणनखंड करें.
चरण 2.1.3
में से का गुणनखंड करें.
चरण 2.1.4
में से का गुणनखंड करें.
चरण 2.1.5
में से का गुणनखंड करें.
चरण 2.2
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 2.3
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
पदों को पुन: व्यवस्थित करें
चरण 2.3.2
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
में से का गुणनखंड करें.
चरण 2.3.2.2
को जोड़ के रूप में फिर से लिखें
चरण 2.3.2.3
वितरण गुणधर्म लागू करें.
चरण 2.3.3
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.3.3.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.3.4
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.4
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
की सभी घटनाओं को से बदलें.
चरण 2.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2.1.2
को से विभाजित करें.
चरण 4.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2.3
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 4.2.4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
का मान ज्ञात करें.
चरण 4.2.5
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 4.2.6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.6.1
कोष्ठक हटा दें.
चरण 4.2.6.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.6.2.1
को से गुणा करें.
चरण 4.2.6.2.2
में से घटाएं.
चरण 4.2.7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 4.2.7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 4.2.7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 4.2.7.4
को से विभाजित करें.
चरण 4.2.8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.2.2
कोज्या की सीमा है. चूँकि इस श्रेणी में नहीं आता है, इसलिए कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
, किसी भी पूर्णांक के लिए