समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
चरण 1.1
उत्पाद नियम को पर लागू करें.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.2.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 1.2.3
और को मिलाएं.
चरण 1.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.4.2
व्यंजक को फिर से लिखें.
चरण 1.2.5
घातांक का मान ज्ञात करें.
चरण 1.3
व्यंजक को सरल बनाएंं.
चरण 1.3.1
को के घात तक बढ़ाएं.
चरण 1.3.2
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 1.3.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.4
में से घटाएं.
चरण 1.4
को के रूप में फिर से लिखें.
चरण 1.5
भाजक को सरल करें.
चरण 1.5.1
को के रूप में फिर से लिखें.
चरण 1.5.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 3
चरण 3.1
का मान ज्ञात करें.
चरण 4
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 5
चरण 5.1
को से गुणा करें.
चरण 5.2
में से घटाएं.
चरण 6
चरण 6.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 6.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 6.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 6.4
को से विभाजित करें.
चरण 7
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए