ट्रिगोनोमेट्री उदाहरण

चरण 1
अनन्तस्पर्शी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
किसी भी के लिए, ऊर्ध्वाधर अनंतस्पर्शी पर आते हैं, जहां एक पूर्णांक है. , के लिए मूलभूत अवधि का उपयोग करके के लिए ऊर्ध्वाधर अनंतस्पर्शी ज्ञात करें. के बराबर के लिए छेदक फलन, के अंदर सेट करें, यह पता करने के लिए कि के लिए ऊर्ध्वाधर अनंतस्पर्शी कहां है.
चरण 1.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.2.1.2
को से विभाजित करें.
चरण 1.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.2.2.3.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 1.2.2.3.1.2.2
में से का गुणनखंड करें.
चरण 1.2.2.3.1.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.3.1.2.4
व्यंजक को फिर से लिखें.
चरण 1.2.2.3.1.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3
छेदक फलन के अंदर को के बराबर सेट करें.
चरण 1.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.2.1.2
को से विभाजित करें.
चरण 1.4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.3.1.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.4.2.3.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.3.1.2.1
में से का गुणनखंड करें.
चरण 1.4.2.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 1.5
की मूल अवधि पर होगी, जहां और ऊर्ध्वाधर अनंतस्पर्शी हैं.
चरण 1.6
आवर्त ज्ञात कीजिए कि ऊर्ध्वाधर अनंतस्पर्शी कहाँ मौजूद हैं. ऊर्ध्वाधर अनंतस्पर्शी हर आधे अवधि में होते हैं.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
चरण 1.6.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.6.2.2
को से विभाजित करें.
चरण 1.7
के लिए ऊर्ध्वाधर अनंतस्पर्शी , और प्रत्येक पर होते हैं, जहां एक पूर्णांक है. यह अवधि का आधा है.
चरण 1.8
सेकेंड में केवल ऊर्ध्वाधर अनंतस्पर्शी होते हैं.
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
चरण 2
आयाम, अवधि, चरण बदलाव और ऊर्ध्वाधर बदलाव को पता करने के लिए प्रयोग किए जाने वाले चर को पता करने के लिए रूप का प्रयोग करें.
चरण 3
चूंकि फलन के ग्राफ़ में अधिकतम या न्यूनतम मान नहीं है, इसलिए आयाम के लिए कोई मान नहीं हो सकता है.
आयाम: कोई नहीं
चरण 4
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 4.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 4.3
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
चरण 4.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.4.2
को से विभाजित करें.
चरण 5
सूत्र का उपयोग करके चरण बदलाव पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
फलन के चरण बदलाव की गणना से की जा सकती है.
चरण बदलाव:
चरण 5.2
चरण बदलाव के समीकरण में और के मान बदलें.
चरण बदलाव:
चरण बदलाव:
चरण 6
त्रिकोणमितीय फलन के गुणों की सूची बनाइए.
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: ( दाईं ओर)
ऊर्ध्वाधर बदलाव: कोई नहीं
चरण 7
त्रिकोणमितीय फलन को आयाम, अवधि, चरण बदलाव, ऊर्ध्वाधर बदलाव और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: ( दाईं ओर)
ऊर्ध्वाधर बदलाव: कोई नहीं
चरण 8