ट्रिगोनोमेट्री उदाहरण

चरण 1
दिए गए परवलय के गुण पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण को शीर्ष रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.1.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.1.2.1.2
को से विभाजित करें.
चरण 1.1.2
के लिए वर्ग पूरा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
, और के मान ज्ञात करने के लिए रूप का प्रयोग करें.
चरण 1.1.2.2
एक परवलय के शीर्ष रूप को लें.
चरण 1.1.2.3
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1
और के मानों को के सूत्र में प्रतिस्थापित करें.
चरण 1.1.2.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.2.1.1
में से का गुणनखंड करें.
चरण 1.1.2.3.2.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.2.3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 1.1.2.3.2.2
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.1.2.3.2.3
को से गुणा करें.
चरण 1.1.2.4
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.4.1
, और के मानों को सूत्र में प्रतिस्थापित करें.
चरण 1.1.2.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.4.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.1.2.4.2.1.2
और को मिलाएं.
चरण 1.1.2.4.2.1.3
को से विभाजित करें.
चरण 1.1.2.4.2.1.4
को से विभाजित करें.
चरण 1.1.2.4.2.1.5
को से गुणा करें.
चरण 1.1.2.4.2.2
और जोड़ें.
चरण 1.1.2.5
, और के मानों को शीर्ष रूप में प्रतिस्थापित करें.
चरण 1.1.3
को नई दाईं ओर सेट करें.
चरण 1.2
, और के मान निर्धारित करने के लिए शीर्ष रूप का उपयोग करें.
चरण 1.3
चूंकि का मान धनात्मक है, परवलय खुल जाता है.
ऊपर खुलता है
चरण 1.4
शीर्ष पता करें.
चरण 1.5
, शीर्ष से नाभि तक की दूरी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
निम्न सूत्र का उपयोग करके परवलय के शीर्ष से नाभि तक की दूरी पता करें.
चरण 1.5.2
के मान को सूत्र में प्रतिस्थापित करें.
चरण 1.5.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.1
और को मिलाएं.
चरण 1.5.3.2
संख्याओं को विभाजित करके सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.2.1
को से विभाजित करें.
चरण 1.5.3.2.2
को से विभाजित करें.
चरण 1.6
नाभि पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
यदि परवलय ऊपर या नीचे खुलता है तो y-निर्देशांक में जोड़कर परवलय का फोकस पता किया जा सकता है.
चरण 1.6.2
, और के ज्ञात मानों को सूत्र में प्रतिस्थापित करें और सरल करें.
चरण 1.7
शीर्ष और नाभि से होकर जाने वाली रेखा पता करके सममिति अक्ष का पता करें
चरण 1.8
नियता पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.8.1
परवलय की नियता वह क्षैतिज रेखा है जो शीर्ष के y-निर्देशांक से घटाकर प्राप्त की जाती है यदि परवलय ऊपर या नीचे खुलता है.
चरण 1.8.2
और के ज्ञात मानों को सूत्र में प्रतिस्थापित करें और सरल करें.
चरण 1.9
परवलय के गुणों का उपयोग करके परवलय का विश्लेषण और ग्राफ करें.
दिशा: ऊपर खुलती है
शीर्ष:
फोकस:
सममिति की धुरी:
नियता:
दिशा: ऊपर खुलती है
शीर्ष:
फोकस:
सममिति की धुरी:
नियता:
चरण 2
कुछ मानों का चयन करें, और संबंधित मानों को ज्ञात करने के लिए उन्हें समीकरण में प्लग करें. शीर्ष के चारों ओर मानों का चयन किया जाना चाहिए.
और स्टेप्स के लिए टैप करें…
चरण 2.1
व्यंजक में चर को से बदलें.
चरण 2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को के घात तक बढ़ाएं.
चरण 2.2.2
को से विभाजित करें.
चरण 2.2.3
अंतिम उत्तर है.
चरण 2.3
का मान पर है.
चरण 2.4
व्यंजक में चर को से बदलें.
चरण 2.5
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के घात तक बढ़ाएं.
चरण 2.5.2
अंतिम उत्तर है.
चरण 2.6
का मान पर है.
चरण 2.7
व्यंजक में चर को से बदलें.
चरण 2.8
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1
को के घात तक बढ़ाएं.
चरण 2.8.2
को से विभाजित करें.
चरण 2.8.3
अंतिम उत्तर है.
चरण 2.9
का मान पर है.
चरण 2.10
व्यंजक में चर को से बदलें.
चरण 2.11
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.11.1
एक का कोई भी घात एक होता है.
चरण 2.11.2
अंतिम उत्तर है.
चरण 2.12
का मान पर है.
चरण 2.13
इसके गुणों और चयनित बिंदुओं का उपयोग करके परवलय का ग्राफ बनाएंं.
चरण 3
इसके गुणों और चयनित बिंदुओं का उपयोग करके परवलय का ग्राफ बनाएंं.
दिशा: ऊपर खुलती है
शीर्ष:
फोकस:
सममिति की धुरी:
नियता:
चरण 4