ट्रिगोनोमेट्री उदाहरण

अन्तराल संकेत मे बदलिये tan(3x-pi/2)>1
चरण 1
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
का सटीक मान है.
चरण 3
वाले सभी पदों को असमानता के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.1
असमानता के दोनों पक्षों में जोड़ें.
चरण 3.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को से गुणा करें.
चरण 3.3.2
को से गुणा करें.
चरण 3.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
को के बाईं ओर ले जाएं.
चरण 3.5.2
और जोड़ें.
चरण 4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 4.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
में से का गुणनखंड करें.
चरण 4.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.3
व्यंजक को फिर से लिखें.
चरण 5
पहले और तीसरे चतुर्थांश में स्पर्शरेखा फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए से संदर्भ कोण जोड़ें.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.1.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1
और को मिलाएं.
चरण 6.1.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.1.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.3.1
को के बाईं ओर ले जाएं.
चरण 6.1.3.2
और जोड़ें.
चरण 6.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.2.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1
को से गुणा करें.
चरण 6.2.3.2
को से गुणा करें.
चरण 6.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.1
को के बाईं ओर ले जाएं.
चरण 6.2.5.2
और जोड़ें.
चरण 6.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.2
को से विभाजित करें.
चरण 6.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 6.3.3.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.3.2.1
को से गुणा करें.
चरण 6.3.3.2.2
को से गुणा करें.
चरण 7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 9
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
चरण 10
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, तर्क को में के बराबर सेट करें.
, किसी भी पूर्णांक के लिए
चरण 10.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 10.2.1.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 10.2.1.3
और जोड़ें.
चरण 10.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.1.4.2
को से विभाजित करें.
चरण 10.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 10.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.2.2.1.2
को से विभाजित करें.
चरण 10.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 11
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 12
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 12.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 12.1.2
मूल असमानता में को से बदलें.
चरण 12.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 12.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 12.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 12.2.2
मूल असमानता में को से बदलें.
चरण 12.2.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 12.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
गलत
सही
गलत
चरण 13
हल में सभी सच्चे अंतराल होते हैं.
, किसी भी पूर्णांक के लिए
चरण 14
असमानता को अंतराल संकेतन में बदलें.
चरण 15