समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
दोनों पक्षों को से गुणा करें.
चरण 2
चरण 2.1
बाईं ओर को सरल बनाएंं.
चरण 2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.1.2
व्यंजक को फिर से लिखें.
चरण 2.2
दाईं ओर को सरल बनाएंं.
चरण 2.2.1
को सरल करें.
चरण 2.2.1.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.2.1.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.2.1.2
वितरण गुणधर्म लागू करें.
चरण 2.2.1.3
गुणा करें.
चरण 2.2.1.3.1
और को मिलाएं.
चरण 2.2.1.3.2
को के घात तक बढ़ाएं.
चरण 2.2.1.3.3
को के घात तक बढ़ाएं.
चरण 2.2.1.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.2.1.3.5
और जोड़ें.
चरण 2.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.4.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.5
प्रत्येक पद को सरल करें.
चरण 2.2.1.5.1
में से का गुणनखंड करें.
चरण 2.2.1.5.2
अलग-अलग भिन्न
चरण 2.2.1.5.3
को में बदलें.
चरण 2.2.1.5.4
को से विभाजित करें.
चरण 3
चरण 3.1
बाईं ओर को सरल बनाएंं.
चरण 3.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 3.2
दाईं ओर को सरल बनाएंं.
चरण 3.2.1
प्रत्येक पद को सरल करें.
चरण 3.2.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 3.2.1.2
गुणा करें.
चरण 3.2.1.2.1
और को मिलाएं.
चरण 3.2.1.2.2
को के घात तक बढ़ाएं.
चरण 3.2.1.2.3
को के घात तक बढ़ाएं.
चरण 3.2.1.2.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.2.1.2.5
और जोड़ें.
चरण 3.3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2
व्यंजक को फिर से लिखें.
चरण 3.5
वितरण गुणधर्म लागू करें.
चरण 3.6
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.2
व्यंजक को फिर से लिखें.
चरण 3.7
गुणा करें.
चरण 3.7.1
को के घात तक बढ़ाएं.
चरण 3.7.2
को के घात तक बढ़ाएं.
चरण 3.7.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.7.4
और जोड़ें.
चरण 3.8
पाइथागोरस सर्वसमिका लागू करें.
चरण 3.9
चूंकि , के किसी भी मान के लिए समीकरण हमेशा सत्य होगा.
सभी वास्तविक संख्या
सभी वास्तविक संख्या
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सभी वास्तविक संख्या
मध्यवर्ती संकेतन: