ट्रिगोनोमेट्री उदाहरण

चरण 1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
का सटीक मान है.
चरण 3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 4
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2
व्यंजक को फिर से लिखें.
चरण 5
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 6.2
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.1.2
व्यंजक को फिर से लिखें.
चरण 6.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
में से घटाएं.
चरण 7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
चरण 7.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 7.5
को से गुणा करें.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए