ट्रिगोनोमेट्री उदाहरण

चरण 1
चूंकि करणी समीकरण के दाएं पक्ष की ओर है, पक्षों को स्विच करें ताकि यह समीकरण के बाएं पक्ष की ओर हो.
चरण 2
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 3
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.2
सरल करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
को के रूप में फिर से लिखें.
चरण 3.3.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.2.1
वितरण गुणधर्म लागू करें.
चरण 3.3.1.2.2
वितरण गुणधर्म लागू करें.
चरण 3.3.1.2.3
वितरण गुणधर्म लागू करें.
चरण 3.3.1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.3.1.1
को से गुणा करें.
चरण 3.3.1.3.1.2
को के बाईं ओर ले जाएं.
चरण 3.3.1.3.1.3
को से गुणा करें.
चरण 3.3.1.3.2
में से घटाएं.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
चूंकि समीकरण के दाएं पक्ष की ओर है, पक्षों को स्विच करें ताकि यह समीकरण के बाएं पक्ष की ओर हो.
चरण 4.2
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.2
में से घटाएं.
चरण 4.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.4
और जोड़ें.
चरण 4.5
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 4.5.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4.6
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.1
को के बराबर सेट करें.
चरण 4.7.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.8
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.8.1
को के बराबर सेट करें.
चरण 4.8.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.9
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.