ट्रिगोनोमेट्री उदाहरण

चरण 1
प्रत्येक पद का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
में से का गुणनखंड करें.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.3
को के रूप में फिर से लिखें.
चरण 1.4
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.3
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.4
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.5
का गुणनखंड ही है.
बार आता है.
चरण 2.6
का गुणनखंड ही है.
बार आता है.
चरण 2.7
का गुणनखंड ही है.
बार आता है.
चरण 2.8
का गुणनखंड ही है.
बार आता है.
चरण 2.9
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.2
वितरण गुणधर्म लागू करें.
चरण 3.2.1.3
को से गुणा करें.
चरण 3.2.1.4
को से गुणा करें.
चरण 3.2.1.5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.5.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.1.5.2
में से का गुणनखंड करें.
चरण 3.2.1.5.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.5.4
व्यंजक को फिर से लिखें.
चरण 3.2.1.6
वितरण गुणधर्म लागू करें.
चरण 3.2.1.7
को से गुणा करें.
चरण 3.2.1.8
को से गुणा करें.
चरण 3.2.2
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
में से घटाएं.
चरण 3.2.2.2
में से घटाएं.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.3.2
वितरण गुणधर्म लागू करें.
चरण 3.3.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
को से गुणा करें.
चरण 3.3.3.2
को से गुणा करें.
चरण 4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.1.2
में से घटाएं.
चरण 4.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.2
और जोड़ें.
चरण 4.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.1.2
को से विभाजित करें.
चरण 4.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1.1
में से का गुणनखंड करें.
चरण 4.3.3.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1.2.1
में से का गुणनखंड करें.
चरण 4.3.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 4.3.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
मिश्रित संख्या रूप: