ट्रिगोनोमेट्री उदाहरण

चरण 1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को के रूप में फिर से लिखें.
चरण 1.2
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 1.3
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 1.3.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 1.4
की सभी घटनाओं को से बदलें.
चरण 2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के बराबर सेट करें.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.2
समीकरण में ऐसे तुल्यांकी व्यंजक बनाएंँ जिनका आधार समान हो.
चरण 3.2.3
चूंकि आधार समान हैं, तो दो व्यंजक केवल तभी बराबर होते हैं जब घातांक भी बराबर हों.
चरण 4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.2
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 4.2.3
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 4.2.4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
का प्राकृतिक लघुगणक है.
चरण 4.2.5
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2.5.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.5.2.1.2
को से विभाजित करें.
चरण 4.2.5.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.3.1
को से विभाजित करें.
चरण 5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.