ट्रिगोनोमेट्री उदाहरण

चरण 1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1.2
व्यंजक को फिर से लिखें.
चरण 1.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.2
व्यंजक को फिर से लिखें.
चरण 1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
अलग-अलग भिन्न
चरण 1.3.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.3.3
एक गुणनफल के रूप में को फिर से लिखें.
चरण 1.3.4
को से गुणा करें.
चरण 1.3.5
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.1
को के घात तक बढ़ाएं.
चरण 1.3.5.2
को के घात तक बढ़ाएं.
चरण 1.3.5.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.3.5.4
और जोड़ें.
चरण 1.3.6
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.6.1
जोड़ना.
चरण 1.3.6.2
को से गुणा करें.
चरण 1.3.7
से गुणा करें.
चरण 1.3.8
अलग-अलग भिन्न
चरण 1.3.9
को में बदलें.
चरण 1.3.10
को से गुणा करें.
चरण 1.3.11
और को मिलाएं.
चरण 2
समीकरण को के रूप में फिर से लिखें.
चरण 3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 4
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.1.2
व्यंजक को फिर से लिखें.
चरण 4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से गुणा करें.
चरण 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 6.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 6.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 7
को हल करने के लिए प्रत्येक हल सेट करें.
चरण 8
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
कोटिज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों का व्युत्क्रम छेदक लें.
चरण 8.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
का सटीक मान है.
चरण 8.3
पहले और चौथे चतुर्थांश में छेदक फलन धनात्मक होता है. दूसरा हल ज्ञात करने के लिए, चौथे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 8.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 8.4.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.2.1
और को मिलाएं.
चरण 8.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 8.4.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.3.1
को से गुणा करें.
चरण 8.4.3.2
में से घटाएं.
चरण 8.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 8.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 8.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 8.5.4
को से विभाजित करें.
चरण 8.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 9
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
कोटिज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों का व्युत्क्रम छेदक लें.
चरण 9.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
का सटीक मान है.
चरण 9.3
दूसरे और तीसरे चतुर्थांश में छेदक फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 9.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 9.4.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 9.4.2.1
और को मिलाएं.
चरण 9.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.4.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.4.3.1
को से गुणा करें.
चरण 9.4.3.2
में से घटाएं.
चरण 9.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 9.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 9.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 9.5.4
को से विभाजित करें.
चरण 9.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 10
सभी हलों की सूची बनाएंं.
, किसी भी पूर्णांक के लिए
चरण 11
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए