ट्रिगोनोमेट्री उदाहरण

xを解きます cos(x+pi/4)=-( 2)/2 का वर्गमूल
चरण 1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
का सटीक मान है.
चरण 3
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.3
में से घटाएं.
चरण 3.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
में से का गुणनखंड करें.
चरण 3.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
में से का गुणनखंड करें.
चरण 3.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.3
व्यंजक को फिर से लिखें.
चरण 4
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 5.1.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
और को मिलाएं.
चरण 5.1.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 5.1.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1
को से गुणा करें.
चरण 5.1.3.2
में से घटाएं.
चरण 5.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 5.2.3
में से घटाएं.
चरण 5.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2.4.2
को से विभाजित करें.
चरण 6
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 6.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 6.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 6.4
को से विभाजित करें.
चरण 7
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए