ट्रिगोनोमेट्री उदाहरण

xを解きます tan(x)+( 3)/(tan(x))<1+ का वर्गमूल 3 का वर्गमूल
चरण 1
को से प्रतिस्थापित करें.
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
को से गुणा करें.
चरण 3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को से गुणा करें.
चरण 4
असमानता को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
इस प्रकार फिर से लिखें कि असमानता के बाईं ओर है.
चरण 4.2
असमानता के दोनों पक्षों से घटाएं.
चरण 4.3
असमानता को समीकरण में बदलें.
चरण 4.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.5
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
पदों को पुन: व्यवस्थित करें
चरण 4.5.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 4.5.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 4.5.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 4.6
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.1
को के बराबर सेट करें.
चरण 4.7.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.7.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.7.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.7.2.2.2.2
को से विभाजित करें.
चरण 4.7.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.3.1
को से विभाजित करें.
चरण 4.8
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.8.1
को के बराबर सेट करें.
चरण 4.8.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.9
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
को से प्रतिस्थापित करें.
चरण 6
को हल करने के लिए प्रत्येक हल सेट करें.
चरण 7
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 7.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
का सटीक मान है.
चरण 7.3
पहले और तीसरे चतुर्थांश में स्पर्शरेखा फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए से संदर्भ कोण जोड़ें.
चरण 7.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 7.4.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 7.4.2.1
और को मिलाएं.
चरण 7.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.4.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.4.3.1
को के बाईं ओर ले जाएं.
चरण 7.4.3.2
और जोड़ें.
चरण 7.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.5.4
को से विभाजित करें.
चरण 7.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 8
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 8.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
का सटीक मान है.
चरण 8.3
पहले और तीसरे चतुर्थांश में स्पर्शरेखा फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए से संदर्भ कोण जोड़ें.
चरण 8.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 8.4.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.2.1
और को मिलाएं.
चरण 8.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 8.4.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.3.1
को के बाईं ओर ले जाएं.
चरण 8.4.3.2
और जोड़ें.
चरण 8.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 8.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 8.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 8.5.4
को से विभाजित करें.
चरण 8.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 9
सभी हलों की सूची बनाएंं.
, किसी भी पूर्णांक के लिए
चरण 10
हल समेकित करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
और को में समेकित करें.
, किसी भी पूर्णांक के लिए
चरण 10.2
और को में समेकित करें.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 11
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, तर्क को में के बराबर सेट करें.
, किसी भी पूर्णांक के लिए
चरण 11.2
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, तर्क को में के बराबर सेट करें.
, किसी भी पूर्णांक के लिए
चरण 11.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 12
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 13
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 13.1.2
मूल असमानता में को से बदलें.
चरण 13.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 13.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 13.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 13.2.2
मूल असमानता में को से बदलें.
चरण 13.2.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 13.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 13.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 13.3.2
मूल असमानता में को से बदलें.
चरण 13.3.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 13.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
सही
सही
सही
सही
चरण 14
हल में सभी सच्चे अंतराल होते हैं.
or or , for any integer
चरण 15
अंतराल को जोड़ें.
, किसी भी पूर्णांक के लिए
चरण 16