ट्रिगोनोमेट्री उदाहरण

चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.1.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.1.2
वितरण गुणधर्म लागू करें.
चरण 1.1.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
और को मिलाएं.
चरण 1.1.3.2
को के घात तक बढ़ाएं.
चरण 1.1.3.3
को के घात तक बढ़ाएं.
चरण 1.1.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.3.5
और जोड़ें.
चरण 1.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.4.2
व्यंजक को फिर से लिखें.
चरण 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 4
वितरण गुणधर्म लागू करें.
चरण 5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2
व्यंजक को फिर से लिखें.
चरण 6
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के घात तक बढ़ाएं.
चरण 6.2
को के घात तक बढ़ाएं.
चरण 6.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.4
और जोड़ें.
चरण 7
पाइथागोरस सर्वसमिका लागू करें.
चरण 8
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2
व्यंजक को फिर से लिखें.
चरण 9
चूंकि , के किसी भी मान के लिए समीकरण हमेशा सत्य होगा.
सभी वास्तविक संख्या
चरण 10
परिणाम कई रूपों में दिखाया जा सकता है.
सभी वास्तविक संख्या
मध्यवर्ती संकेतन: