ट्रिगोनोमेट्री उदाहरण

चरण 1
अनन्तस्पर्शी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
किसी भी के लिए, ऊर्ध्वाधर अनंतस्पर्शी पर आते हैं, जहां एक पूर्णांक है. , के लिए मूलभूत अवधि का उपयोग करके के लिए ऊर्ध्वाधर अनंतस्पर्शी पता करें. स्पर्शरेखा फलन के अंदर सेट करें, , के लिए के बराबर यह पता लगाने के लिए कि के लिए ऊर्ध्वाधर अनंतस्पर्शी कहां है.
चरण 1.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.3
में से घटाएं.
चरण 1.2.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.1
में से का गुणनखंड करें.
चरण 1.2.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.2.1
में से का गुणनखंड करें.
चरण 1.2.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.4.2.3
व्यंजक को फिर से लिखें.
चरण 1.2.4.2.4
को से विभाजित करें.
चरण 1.3
स्पर्शरेखा फलन के अंदर को के बराबर सेट करें.
चरण 1.4
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.4.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.4.3
में से घटाएं.
चरण 1.4.4
को से विभाजित करें.
चरण 1.5
की मूल अवधि पर होगी, जहां और ऊर्ध्वाधर अनंतस्पर्शी हैं.
चरण 1.6
अवधि पता करके पता लगाएँ कि ऊर्ध्वाधर अनंतस्पर्शी कहाँ विद्यमान हैं.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 1.6.2
को से विभाजित करें.
चरण 1.7
के लिए ऊर्ध्वाधर अनंतस्पर्शी , और प्रत्येक पर होते हैं, जहां एक पूर्णांक है.
चरण 1.8
स्पर्शरेखा में केवल ऊर्ध्वाधर अनंतस्पर्शी होते हैं.
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
चरण 2
आयाम, अवधि, चरण बदलाव और ऊर्ध्वाधर बदलाव को पता करने के लिए प्रयोग किए जाने वाले चर को पता करने के लिए रूप का प्रयोग करें.
चरण 3
चूंकि फलन के ग्राफ़ में अधिकतम या न्यूनतम मान नहीं है, इसलिए आयाम के लिए कोई मान नहीं हो सकता है.
आयाम: कोई नहीं
चरण 4
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 4.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 4.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 4.4
को से विभाजित करें.
चरण 5
सूत्र का उपयोग करके चरण बदलाव पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
फलन के चरण बदलाव की गणना से की जा सकती है.
चरण बदलाव:
चरण 5.2
चरण बदलाव के समीकरण में और के मान बदलें.
चरण बदलाव:
चरण 5.3
को से विभाजित करें.
चरण बदलाव:
चरण बदलाव:
चरण 6
त्रिकोणमितीय फलन के गुणों की सूची बनाइए.
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: ( बाईं ओर)
ऊर्ध्वाधर बदलाव: कोई नहीं
चरण 7
त्रिकोणमितीय फलन को आयाम, अवधि, चरण बदलाव, ऊर्ध्वाधर बदलाव और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: ( बाईं ओर)
ऊर्ध्वाधर बदलाव: कोई नहीं
चरण 8