ट्रिगोनोमेट्री उदाहरण

चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
ज्या और कोज्या के संदर्भ में फिर से लिखें, फिर सामान्य गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
और को पुन: क्रमित करें.
चरण 1.1.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.1.1.3
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 1.1.2
को में बदलें.
चरण 2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3
कोटिज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों का व्युत्क्रम छेदक लें.
चरण 4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1
का सटीक मान है.
चरण 5
पहले और चौथे चतुर्थांश में छेदक फलन धनात्मक होता है. दूसरा हल ज्ञात करने के लिए, चौथे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 6
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
और को मिलाएं.
चरण 6.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
को से गुणा करें.
चरण 6.3.2
में से घटाएं.
चरण 7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.4
को से विभाजित करें.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए