ट्रिगोनोमेट्री उदाहरण

चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
ज्या और कोज्या के संदर्भ में फिर से लिखें, फिर सामान्य गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 2
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1
का सटीक मान है.
चरण 4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.1.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1
और को मिलाएं.
चरण 6.1.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.1.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.3.1
को से गुणा करें.
चरण 6.1.3.2
में से घटाएं.
चरण 6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.4
को से विभाजित करें.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 9
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए