ट्रिगोनोमेट्री उदाहरण

बिल्कुल ठीक मान ज्ञात कीजिये csc((9pi)/8)
csc(9π8)
चरण 1
9π8 को एक कोण के रूप में फिर से लिखें जहां छह त्रिकोणमितीय फलनों के मान 2 से विभाजित हों.
csc(9π42)
चरण 2
प्रतिलोम सर्वसमिका को csc(9π42) पर लागू करें.
1sin(9π42)
चरण 3
ज्या अर्ध-कोण सर्वसमिका लागू करें.
1±1-cos(9π4)2
चरण 4
Change the ± to - because cosecant is negative in the third quadrant.
1-1-cos(9π4)2
चरण 5
1-1-cos(9π4)2 को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
1 और -1 के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
1 को -1(-1) के रूप में फिर से लिखें.
-1(-1)-1-cos(9π4)2
चरण 5.1.2
भिन्न के सामने ऋणात्मक ले जाएँ.
-11-cos(9π4)2
-11-cos(9π4)2
चरण 5.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
2π का पूरा घुमाव घटाएं जब तक कि कोण 0 से बड़ा या उसके बराबर और 2π से कम न हो जाए.
-11-cos(π4)2
चरण 5.2.2
cos(π4) का सटीक मान 22 है.
-11-222
चरण 5.2.3
एक सामान्य भाजक के साथ 1 को भिन्न के रूप में लिखें.
-122-222
चरण 5.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
-12-222
-12-222
चरण 5.3
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
-12-2212
चरण 5.3.2
2-2212 गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.2.1
2-22 को 12 से गुणा करें.
-12-222
चरण 5.3.2.2
2 को 2 से गुणा करें.
-12-24
-12-24
चरण 5.3.3
2-24 को 2-24 के रूप में फिर से लिखें.
-12-24
चरण 5.3.4
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.4.1
4 को 22 के रूप में फिर से लिखें.
-12-222
चरण 5.3.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
-12-22
-12-22
-12-22
चरण 5.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
-(122-2)
चरण 5.5
22-2 को 1 से गुणा करें.
-22-2
-22-2
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
-22-2
दशमलव रूप:
-2.61312592
 [x2  12  π  xdx ]