ट्रिगोनोमेट्री उदाहरण

चरण 1
सभी अभिव्यक्तियों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
को से बदलें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में से घटाएं.
चरण 3.2
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
पदों को पुन: व्यवस्थित करें
चरण 3.2.2
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
में से का गुणनखंड करें.
चरण 3.2.2.2
को जोड़ के रूप में फिर से लिखें
चरण 3.2.2.3
वितरण गुणधर्म लागू करें.
चरण 3.2.2.4
को से गुणा करें.
चरण 3.2.2.5
को से गुणा करें.
चरण 3.2.3
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 3.2.3.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 3.2.4
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 3.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
को के बराबर सेट करें.
चरण 3.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.4.2.2.2.2
को से विभाजित करें.
चरण 3.4.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.2.3.1
को से विभाजित करें.
चरण 3.4.2.3
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 3.4.2.4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.4.1
का सटीक मान है.
चरण 3.4.2.5
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 3.4.2.6
में से घटाएं.
चरण 3.4.2.7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 3.4.2.7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 3.4.2.7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 3.4.2.7.4
को से विभाजित करें.
चरण 3.4.2.8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 3.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 4
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए