समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
चरण 2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2
को से विभाजित करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3.2
को से गुणा करें.
चरण 2.3.3
भाजक को मिलाएं और सरल करें.
चरण 2.3.3.1
को से गुणा करें.
चरण 2.3.3.2
को के घात तक बढ़ाएं.
चरण 2.3.3.3
को के घात तक बढ़ाएं.
चरण 2.3.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.3.3.5
और जोड़ें.
चरण 2.3.3.6
को के रूप में फिर से लिखें.
चरण 2.3.3.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.3.3.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.3.6.3
और को मिलाएं.
चरण 2.3.3.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.6.4.2
व्यंजक को फिर से लिखें.
चरण 2.3.3.6.5
घातांक का मान ज्ञात करें.
चरण 3
कोटिस्पर्शज्या के अंदर से को निकालने के लिए समीकरण के दोनों पक्षों का व्युत्क्रम कोटिस्पर्शज्या लें.
चरण 4
चरण 4.1
का सटीक मान है.
चरण 5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
चरण 6
चरण 6.1
को में जोड़ें.
चरण 6.2
का परिणामी कोण के साथ धनात्मक और कोटरमिनल है.
चरण 7
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.4
को से विभाजित करें.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 9
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए