समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
चरण 1
यदि एक बहुपद फलन में पूर्णांक गुणांक होते हैं, तो प्रत्येक परिमेय शून्य का रूप होगा, जहां स्थिरांक का एक गुणनखंड है और प्रमुख गुणांक का एक गुणनखंड है.
चरण 2
का प्रत्येक संयोजन पता करें. ये बहुपद फलन के संभावित मूल हैं.
चरण 3
वास्तविक मूल ज्ञात करने के लिए बहुपद में संभावित मूलों को एक-एक करके प्रतिस्थापित करें. यह जांचने के लिए सरल करें कि क्या मान है, जिसका मतलब है कि यह एक मूल है.
चरण 4
चरण 4.1
प्रत्येक पद को सरल करें.
चरण 4.1.1
घातांक जोड़कर को से गुणा करें.
चरण 4.1.1.1
को से गुणा करें.
चरण 4.1.1.1.1
को के घात तक बढ़ाएं.
चरण 4.1.1.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.1.1.2
और जोड़ें.
चरण 4.1.2
को के घात तक बढ़ाएं.
चरण 4.1.3
को के घात तक बढ़ाएं.
चरण 4.1.4
को से गुणा करें.
चरण 4.1.5
को से गुणा करें.
चरण 4.2
जोड़कर और घटाकर सरल करें.
चरण 4.2.1
में से घटाएं.
चरण 4.2.2
में से घटाएं.
चरण 4.2.3
और जोड़ें.
चरण 5
चूंकि एक ज्ञात मूल है, बहुपद को से भाग देकर भागफल बहुपद ज्ञात करें. इस बहुपद का उपयोग तब शेष मूलों को ज्ञात करने के लिए किया जा सकता है.
चरण 6
चरण 6.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
चरण 6.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
चरण 6.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
चरण 6.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
चरण 6.5
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
चरण 6.6
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
चरण 6.7
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
चरण 6.8
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
चरण 6.9
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 6.10
भागफल बहुपद को सरल करें.
चरण 7
चरण 7.1
में से का गुणनखंड करें.
चरण 7.2
में से का गुणनखंड करें.
चरण 7.3
में से का गुणनखंड करें.
चरण 8
चरण 8.1
में से का गुणनखंड करें.
चरण 8.1.1
में से का गुणनखंड करें.
चरण 8.1.2
में से का गुणनखंड करें.
चरण 8.1.3
में से का गुणनखंड करें.
चरण 8.1.4
में से का गुणनखंड करें.
चरण 8.1.5
में से का गुणनखंड करें.
चरण 8.1.6
में से का गुणनखंड करें.
चरण 8.1.7
में से का गुणनखंड करें.
चरण 8.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 8.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 8.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 8.3
गुणनखंड करें.
चरण 8.3.1
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 8.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 9
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 10
चरण 10.1
को के बराबर सेट करें.
चरण 10.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 11
चरण 11.1
को के बराबर सेट करें.
चरण 11.2
के लिए हल करें.
चरण 11.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 11.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 11.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 11.2.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 11.2.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 11.2.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 12
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 13
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
चरण 14