प्री-कैलकुलस उदाहरण

x और y प्रतिच्छेद ज्ञात करें (x+8)^2+(y-1)^2=7
चरण 1
x- अंत:खंड ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
x- अंत:खंड(अंत:खंडों) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 1.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.2
में से घटाएं.
चरण 1.2.3
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1.1
को के घात तक बढ़ाएं.
चरण 1.2.3.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.2.3.2
और जोड़ें.
चरण 1.2.4
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.2.5
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
को के घात तक बढ़ाएं.
चरण 1.2.5.2
में से घटाएं.
चरण 1.2.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.6.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.6.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.6.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.3
x- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
x- अंत:खंड(अंत:खंडों):
x- अंत:खंड(अंत:खंडों):
चरण 2
y- अंत:खंड पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 2.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.2
और जोड़ें.
चरण 2.2.3
को के घात तक बढ़ाएं.
चरण 2.2.4
को से गुणा करें.
चरण 2.2.5
में से घटाएं.
चरण 2.2.6
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.2.7
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.7.1
को के रूप में फिर से लिखें.
चरण 2.2.7.2
को के रूप में फिर से लिखें.
चरण 2.2.7.3
को के रूप में फिर से लिखें.
चरण 2.2.8
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.8.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.2.8.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.8.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.2.8.4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.8.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.3
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
y- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 3
प्रतिच्छेदनों को सूचीबद्ध करें.
x- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 4