प्री-कैलकुलस उदाहरण

मूलों (शून्यकों) का पता लगाए (3x+5)(x^2-6x+9)^2
चरण 1
को के बराबर सेट करें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.2
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को के बराबर सेट करें.
चरण 2.2.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.2.2.1.2
को से विभाजित करें.
चरण 2.2.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को के बराबर सेट करें.
चरण 2.3.2.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.1
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.1.1
को के रूप में फिर से लिखें.
चरण 2.3.2.2.1.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 2.3.2.2.1.3
बहुपद को फिर से लिखें.
चरण 2.3.2.2.1.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 2.3.2.2.2
को के बराबर सेट करें.
चरण 2.3.2.2.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3