प्री-कैलकुलस उदाहरण

त्रिकोणमितीय व्यंजक का प्रसार कीजिये। sin(arcsin(u)-arctan(v))
चरण 1
कोण सर्वसमिका के अंतर को लागू करें.
चरण 2
पदों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
ज्या फलन और चापज्या व्युत्क्रम हैं.
चरण 2.1.2
समतल में एक त्रिभुज बनाएंं जिसमें शीर्ष , और मूल बिंदु हों. फिर धनात्मक x-अक्ष और किरण के बीच का कोण है जो मूल बिंदु से शुरू होकर से होकर गुजरती है. इसलिए, है.
चरण 2.1.3
को से गुणा करें.
चरण 2.1.4
भाजक को मिलाएं और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
को से गुणा करें.
चरण 2.1.4.2
को के घात तक बढ़ाएं.
चरण 2.1.4.3
को के घात तक बढ़ाएं.
चरण 2.1.4.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.4.5
और जोड़ें.
चरण 2.1.4.6
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.1.4.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.4.6.3
और को मिलाएं.
चरण 2.1.4.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.4.6.4.2
व्यंजक को फिर से लिखें.
चरण 2.1.4.6.5
सरल करें.
चरण 2.1.5
और को मिलाएं.
चरण 2.1.6
समतल में एक त्रिभुज बनाएंं जिसमें शीर्ष , और मूल बिंदु हों. फिर धनात्मक x-अक्ष और किरण के बीच का कोण है जो मूल बिंदु से शुरू होकर से होकर गुजरती है. इसलिए, है.
चरण 2.1.7
को के रूप में फिर से लिखें.
चरण 2.1.8
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.1.9
समतल में एक त्रिभुज बनाएंं जिसमें शीर्ष , और मूल बिंदु हों. फिर धनात्मक x-अक्ष और किरण के बीच का कोण है जो मूल बिंदु से शुरू होकर से होकर गुजरती है. इसलिए, है.
चरण 2.1.10
को से गुणा करें.
चरण 2.1.11
भाजक को मिलाएं और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.11.1
को से गुणा करें.
चरण 2.1.11.2
को के घात तक बढ़ाएं.
चरण 2.1.11.3
को के घात तक बढ़ाएं.
चरण 2.1.11.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.11.5
और जोड़ें.
चरण 2.1.11.6
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.11.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.1.11.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.11.6.3
और को मिलाएं.
चरण 2.1.11.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.11.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.11.6.4.2
व्यंजक को फिर से लिखें.
चरण 2.1.11.6.5
सरल करें.
चरण 2.1.12
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.12.1
और को मिलाएं.
चरण 2.1.12.2
रेडिकल के लिए उत्पाद नियम का उपयोग करके जोड़ें.
चरण 2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.