प्री-कैलकुलस उदाहरण

अनंतस्‍पर्शी रेखाओं का पता लगाओ y=4tan(x-pi/2)
चरण 1
किसी भी के लिए, ऊर्ध्वाधर अनंतस्पर्शी पर आते हैं, जहां एक पूर्णांक है. , के लिए मूलभूत अवधि का उपयोग करके के लिए ऊर्ध्वाधर अनंतस्पर्शी पता करें. स्पर्शरेखा फलन के अंदर सेट करें, , के लिए के बराबर यह पता लगाने के लिए कि के लिए ऊर्ध्वाधर अनंतस्पर्शी कहां है.
चरण 2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.3
और जोड़ें.
चरण 2.4
को से विभाजित करें.
चरण 3
स्पर्शरेखा फलन के अंदर को के बराबर सेट करें.
चरण 4
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.3
और जोड़ें.
चरण 4.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.4.2
को से विभाजित करें.
चरण 5
की मूल अवधि पर होगी, जहां और ऊर्ध्वाधर अनंतस्पर्शी हैं.
चरण 6
अवधि पता करके पता लगाएँ कि ऊर्ध्वाधर अनंतस्पर्शी कहाँ विद्यमान हैं.
और स्टेप्स के लिए टैप करें…
चरण 6.1
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 6.2
को से विभाजित करें.
चरण 7
के लिए ऊर्ध्वाधर अनंतस्पर्शी , और प्रत्येक पर होते हैं, जहां एक पूर्णांक है.
चरण 8
स्पर्शरेखा में केवल ऊर्ध्वाधर अनंतस्पर्शी होते हैं.
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
चरण 9