प्री-कैलकुलस उदाहरण

केंद्र का पता लगाएं x^2-y^2-8x-4y-4=0
चरण 1
अतिपरवलय का मानक रूप पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2
के लिए वर्ग पूरा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
, और के मान ज्ञात करने के लिए रूप का प्रयोग करें.
चरण 1.2.2
एक परवलय के शीर्ष रूप को लें.
चरण 1.2.3
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
और के मानों को के सूत्र में प्रतिस्थापित करें.
चरण 1.2.3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1
में से का गुणनखंड करें.
चरण 1.2.3.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.2.1
में से का गुणनखंड करें.
चरण 1.2.3.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.2.3
व्यंजक को फिर से लिखें.
चरण 1.2.3.2.2.4
को से विभाजित करें.
चरण 1.2.4
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.1
, और के मानों को सूत्र में प्रतिस्थापित करें.
चरण 1.2.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.2.1.1
को के घात तक बढ़ाएं.
चरण 1.2.4.2.1.2
को से गुणा करें.
चरण 1.2.4.2.1.3
को से विभाजित करें.
चरण 1.2.4.2.1.4
को से गुणा करें.
चरण 1.2.4.2.2
में से घटाएं.
चरण 1.2.5
, और के मानों को शीर्ष रूप में प्रतिस्थापित करें.
चरण 1.3
समीकरण में के स्थान पर को प्रतिस्थापित करें.
चरण 1.4
दोनों पक्षों में जोड़कर समीकरण के दाईं ओर ले जाएं.
चरण 1.5
के लिए वर्ग पूरा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
, और के मान ज्ञात करने के लिए रूप का प्रयोग करें.
चरण 1.5.2
एक परवलय के शीर्ष रूप को लें.
चरण 1.5.3
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.1
और के मानों को के सूत्र में प्रतिस्थापित करें.
चरण 1.5.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.2.1.1
में से का गुणनखंड करें.
चरण 1.5.3.2.1.2
ऋणात्मक को के भाजक से हटा दें.
चरण 1.5.3.2.2
को के रूप में फिर से लिखें.
चरण 1.5.3.2.3
को से गुणा करें.
चरण 1.5.4
सूत्र का उपयोग करके का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.4.1
, और के मानों को सूत्र में प्रतिस्थापित करें.
चरण 1.5.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.4.2.1.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.4.2.1.1.1
को के रूप में फिर से लिखें.
चरण 1.5.4.2.1.1.2
उत्पाद नियम को पर लागू करें.
चरण 1.5.4.2.1.1.3
को के घात तक बढ़ाएं.
चरण 1.5.4.2.1.1.4
को से गुणा करें.
चरण 1.5.4.2.1.1.5
में से का गुणनखंड करें.
चरण 1.5.4.2.1.1.6
ऋणात्मक को के भाजक से हटा दें.
चरण 1.5.4.2.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.4.2.1.2.1
को से गुणा करें.
चरण 1.5.4.2.1.2.2
को से गुणा करें.
चरण 1.5.4.2.2
और जोड़ें.
चरण 1.5.5
, और के मानों को शीर्ष रूप में प्रतिस्थापित करें.
चरण 1.6
समीकरण में के स्थान पर को प्रतिस्थापित करें.
चरण 1.7
दोनों पक्षों में जोड़कर समीकरण के दाईं ओर ले जाएं.
चरण 1.8
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.8.1
और जोड़ें.
चरण 1.8.2
में से घटाएं.
चरण 1.9
प्रत्येक पद को से विभाजित करके दाईं भुजा को एक के बराबर करें.
चरण 1.10
दाईं ओर के बराबर सेट करने के लिए समीकरण में प्रत्येक पद को सरल करें. दीर्घवृत्त या अतिपरवलय के मानक रूप के लिए समीकरण के दाएं पक्ष की ओर होना आवश्यक है.
चरण 2
यह अतिपरवलय का रूप है. अतिपरवलय के शीर्ष और स्पर्शोन्मुख को खोजने के लिए उपयोग किए गए मानों को निर्धारित करने के लिए इस रूप का उपयोग करें.
चरण 3
इस अतिपरवलय के मान को मानक रूप के मान से सुमेलित कीजिए. चर मूल से x- ऑफ़सेट का प्रतिनिधित्व करता है, मूल से y- ऑफ़सेट का प्रतिनिधित्व करता है, .
चरण 4
अतिपरवलय का केंद्र के रूप का अनुसरण करता है. और के मानों को प्रतिस्थापित करें.
चरण 5