प्री-कैलकुलस उदाहरण

x और y प्रतिच्छेद ज्ञात करें x^3-2x^2-x+2
चरण 1
को एक समीकरण के रूप में लिखें.
चरण 2
x- अंत:खंड ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
x- अंत:खंड(अंत:खंडों) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 2.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.2.2.1.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.2.2.2
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.2.2.3
को के रूप में फिर से लिखें.
चरण 2.2.2.4
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.4.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.2.2.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
को के बराबर सेट करें.
चरण 2.2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.1
को के बराबर सेट करें.
चरण 2.2.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.6.1
को के बराबर सेट करें.
चरण 2.2.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 2.3
x- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
x- अंत:खंड(अंत:खंडों):
x- अंत:खंड(अंत:खंडों):
चरण 3
y- अंत:खंड पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 3.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
कोष्ठक हटा दें.
चरण 3.2.2
कोष्ठक हटा दें.
चरण 3.2.3
कोष्ठक हटा दें.
चरण 3.2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.4.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.2.4.1.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.2.4.1.3
को से गुणा करें.
चरण 3.2.4.1.4
को से गुणा करें.
चरण 3.2.4.2
संख्याओं को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.4.2.1
और जोड़ें.
चरण 3.2.4.2.2
और जोड़ें.
चरण 3.2.4.2.3
और जोड़ें.
चरण 3.3
y- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
y- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 4
प्रतिच्छेदनों को सूचीबद्ध करें.
x- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 5