प्री-कैलकुलस उदाहरण

मूलों (शून्यकों) का पता लगाए x^4-3x^3-27x+81
चरण 1
को के बराबर सेट करें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.1.1.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.1.2
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.1.3
को के रूप में फिर से लिखें.
चरण 2.1.4
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 2.1.5
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.5.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.5.1.1
को के बाईं ओर ले जाएं.
चरण 2.1.5.1.2
को के घात तक बढ़ाएं.
चरण 2.1.5.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.1.6
प्रतिपादकों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.6.1
को के घात तक बढ़ाएं.
चरण 2.1.6.2
को के घात तक बढ़ाएं.
चरण 2.1.6.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.6.4
और जोड़ें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को के बराबर सेट करें.
चरण 2.3.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.4.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.4.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1.1
को के घात तक बढ़ाएं.
चरण 2.4.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1.2.1
को से गुणा करें.
चरण 2.4.2.3.1.2.2
को से गुणा करें.
चरण 2.4.2.3.1.3
में से घटाएं.
चरण 2.4.2.3.1.4
को के रूप में फिर से लिखें.
चरण 2.4.2.3.1.5
को के रूप में फिर से लिखें.
चरण 2.4.2.3.1.6
को के रूप में फिर से लिखें.
चरण 2.4.2.3.1.7
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1.7.1
में से का गुणनखंड करें.
चरण 2.4.2.3.1.7.2
को के रूप में फिर से लिखें.
चरण 2.4.2.3.1.8
करणी से पदों को बाहर निकालें.
चरण 2.4.2.3.1.9
को के बाईं ओर ले जाएं.
चरण 2.4.2.3.2
को से गुणा करें.
चरण 2.4.2.4
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3