समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
चरण 1
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
चरण 1.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.6
का गुणनखंड ही है.
बार आता है.
चरण 1.7
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 1.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 1.9
को से गुणा करें.
चरण 2
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.1.2
में से का गुणनखंड करें.
चरण 2.2.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.4
व्यंजक को फिर से लिखें.
चरण 2.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
को से गुणा करें.
चरण 3
चरण 3.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 3.3
सरल करें.
चरण 3.3.1
न्यूमेरेटर को सरल करें.
चरण 3.3.1.1
को के घात तक बढ़ाएं.
चरण 3.3.1.2
गुणा करें.
चरण 3.3.1.2.1
को से गुणा करें.
चरण 3.3.1.2.2
को से गुणा करें.
चरण 3.3.1.3
और जोड़ें.
चरण 3.3.2
को से गुणा करें.
चरण 3.4
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: