प्री-कैलकुलस उदाहरण

चरण 1
प्रत्येक पद का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
में से का गुणनखंड करें.
चरण 1.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
में से का गुणनखंड करें.
चरण 1.2.2
में से का गुणनखंड करें.
चरण 1.2.3
में से का गुणनखंड करें.
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.3
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.4
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.6
का गुणनखंड ही है.
बार आता है.
चरण 2.7
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 2.8
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2.1.2
और को मिलाएं.
चरण 3.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.4.3
व्यंजक को फिर से लिखें.
चरण 3.2.2
में से घटाएं.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.2
व्यंजक को फिर से लिखें.
चरण 3.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.2
व्यंजक को फिर से लिखें.
चरण 4
चूंकि , के किसी भी मान के लिए समीकरण हमेशा सत्य होगा.
सभी वास्तविक संख्या
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सभी वास्तविक संख्या
मध्यवर्ती संकेतन: