प्री-कैलकुलस उदाहरण

शुन्यक और उनके गुणक को पहचानिये p(x)=3x^4+7x^3-10x^2-28x-8
चरण 1
को के बराबर सेट करें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
पदों को फिर से समूहित करें.
चरण 2.1.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
में से का गुणनखंड करें.
चरण 2.1.2.2
में से का गुणनखंड करें.
चरण 2.1.2.3
में से का गुणनखंड करें.
चरण 2.1.3
को के रूप में फिर से लिखें.
चरण 2.1.4
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.1.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.1.5
को के रूप में फिर से लिखें.
चरण 2.1.6
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 2.1.7
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.7.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.7.1.1
में से का गुणनखंड करें.
चरण 2.1.7.1.2
को जोड़ के रूप में फिर से लिखें
चरण 2.1.7.1.3
वितरण गुणधर्म लागू करें.
चरण 2.1.7.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.7.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.1.7.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.1.7.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.1.8
की सभी घटनाओं को से बदलें.
चरण 2.1.9
को के रूप में फिर से लिखें.
चरण 2.1.10
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.10.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.1.10.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.1.11
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.11.1
में से का गुणनखंड करें.
चरण 2.1.11.2
में से का गुणनखंड करें.
चरण 2.1.11.3
में से का गुणनखंड करें.
चरण 2.1.12
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 2.1.13
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.13.1
पदों को पुन: व्यवस्थित करें
चरण 2.1.13.2
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.13.2.1
में से का गुणनखंड करें.
चरण 2.1.13.2.2
को जोड़ के रूप में फिर से लिखें
चरण 2.1.13.2.3
वितरण गुणधर्म लागू करें.
चरण 2.1.13.2.4
को से गुणा करें.
चरण 2.1.13.3
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.13.3.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.1.13.3.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.1.13.4
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.1.14
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.14.1
की सभी घटनाओं को से बदलें.
चरण 2.1.14.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.1.15
प्रतिपादकों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.15.1
को के घात तक बढ़ाएं.
चरण 2.1.15.2
को के घात तक बढ़ाएं.
चरण 2.1.15.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.15.4
और जोड़ें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को के बराबर सेट करें.
चरण 2.3.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.2.1.2
को से विभाजित करें.
चरण 2.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.6
अंतिम हल वे सभी मान हैं जो को सिद्ध करते हैं. मूल की बहुलता मूल के प्रकट होने की संख्या है.
( का गुणा)
( का गुणा)
( का गुणा)
( का गुणा)
( का गुणा)
( का गुणा)
चरण 3