प्री-कैलकुलस उदाहरण

अनंतस्‍पर्शी रेखाओं का पता लगाओ (y-3)^2-4(x-1)^2=36
चरण 1
अतिपरवलय का मानक रूप पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
प्रत्येक पद को से विभाजित करके दाईं भुजा को एक के बराबर करें.
चरण 1.2
दाईं ओर के बराबर सेट करने के लिए समीकरण में प्रत्येक पद को सरल करें. दीर्घवृत्त या अतिपरवलय के मानक रूप के लिए समीकरण के दाएं पक्ष की ओर होना आवश्यक है.
चरण 2
यह अतिपरवलय का रूप है. अतिपरवलय के स्पर्शोन्मुख को खोजने के लिए उपयोग किए गए मानों को निर्धारित करने के लिए इस रूप का उपयोग करें.
चरण 3
इस अतिपरवलय के मान को मानक रूप के मान से सुमेलित कीजिए. चर मूल से x- ऑफ़सेट का प्रतिनिधित्व करता है, मूल से y- ऑफ़सेट का प्रतिनिधित्व करता है, .
चरण 4
स्पर्शोन्मुख रूप का अनुसरण करते हैं क्योंकि यह अतिपरवलय ऊपर और नीचे खुलता है.
चरण 5
प्रथम स्पर्शोन्मुख को ज्ञात करने के लिए सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
कोष्ठक हटा दें.
चरण 5.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
को से गुणा करें.
चरण 5.2.1.2
वितरण गुणधर्म लागू करें.
चरण 5.2.1.3
को से गुणा करें.
चरण 5.2.2
और जोड़ें.
चरण 6
दूसरा स्पर्शोन्मुख ज्ञात करने के लिए सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
कोष्ठक हटा दें.
चरण 6.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को से गुणा करें.
चरण 6.2.1.2
वितरण गुणधर्म लागू करें.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.2
और जोड़ें.
चरण 7
इस अतिपरवलय में दो स्पर्शोन्मुख होते हैं.
चरण 8
और एसिम्प्टोट हैं.
अनंतस्पर्शी:
चरण 9