प्री-कैलकुलस उदाहरण

x और y प्रतिच्छेद ज्ञात करें y=x-1/75x^3
चरण 1
x- अंत:खंड ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
x- अंत:खंड(अंत:खंडों) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 1.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण को के रूप में फिर से लिखें.
चरण 1.2.2
और को मिलाएं.
चरण 1.2.3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
में से का गुणनखंड करें.
चरण 1.2.3.2
में से का गुणनखंड करें.
चरण 1.2.3.3
में से का गुणनखंड करें.
चरण 1.2.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 1.2.5
को के बराबर सेट करें.
चरण 1.2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.1
को के बराबर सेट करें.
चरण 1.2.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.6.2.2
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 1.2.6.2.3
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.1.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.1.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 1.2.6.2.3.1.1.1.2
में से का गुणनखंड करें.
चरण 1.2.6.2.3.1.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.6.2.3.1.1.1.4
व्यंजक को फिर से लिखें.
चरण 1.2.6.2.3.1.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.1.1.2.1
को से गुणा करें.
चरण 1.2.6.2.3.1.1.2.2
को से गुणा करें.
चरण 1.2.6.2.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.3.2.1
को से गुणा करें.
चरण 1.2.6.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 1.2.6.2.5
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.5.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.5.1.1
में से का गुणनखंड करें.
चरण 1.2.6.2.5.1.2
को के रूप में फिर से लिखें.
चरण 1.2.6.2.5.2
करणी से पदों को बाहर निकालें.
चरण 1.2.6.2.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.2.6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.6.2.6.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.6.2.6.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 1.3
x- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
x- अंत:खंड(अंत:खंडों):
x- अंत:खंड(अंत:खंडों):
चरण 2
y- अंत:खंड पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 2.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
कोष्ठक हटा दें.
चरण 2.2.2
कोष्ठक हटा दें.
चरण 2.2.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 2.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1.2.1
को से गुणा करें.
चरण 2.2.3.1.2.2
को से गुणा करें.
चरण 2.2.3.2
और जोड़ें.
चरण 2.3
y- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
y- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 3
प्रतिच्छेदनों को सूचीबद्ध करें.
x- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 4