प्री-कैलकुलस उदाहरण

गुणनखण्ड करके हल कीजिये tan(x)+cot(x)=sec(x)csc(x)
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.1.3
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.1.4
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 2.1.5
को से गुणा करें.
चरण 3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 4
वितरण गुणधर्म लागू करें.
चरण 5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.1.2
व्यंजक को फिर से लिखें.
चरण 5.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
और को मिलाएं.
चरण 5.2.2
को के घात तक बढ़ाएं.
चरण 5.2.3
को के घात तक बढ़ाएं.
चरण 5.2.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 5.2.5
और जोड़ें.
चरण 5.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 6
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
में से का गुणनखंड करें.
चरण 6.2
में से का गुणनखंड करें.
चरण 6.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.4
व्यंजक को फिर से लिखें.
चरण 7
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 8
और को पुन: क्रमित करें.
चरण 9
को के रूप में फिर से लिखें.
चरण 10
में से का गुणनखंड करें.
चरण 11
में से का गुणनखंड करें.
चरण 12
को के रूप में फिर से लिखें.
चरण 13
पाइथागोरस सर्वसमिका लागू करें.
चरण 14
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 14.1
में से का गुणनखंड करें.
चरण 14.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1
से गुणा करें.
चरण 14.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 14.2.3
व्यंजक को फिर से लिखें.
चरण 14.2.4
को से विभाजित करें.
चरण 15
में से घटाएं.
चरण 16
को से गुणा करें.
चरण 17
चूंकि , समीकरण हमेशा सत्य होगा.
हमेशा सत्य