प्री-कैलकुलस उदाहरण

मूलों (शून्यकों) का पता लगाए f(x)=x^4-5x^3+20x-16
चरण 1
को के बराबर सेट करें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
परिमेय मूल परीक्षण का उपयोग करते हुए गुणनखंड है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
यदि एक बहुपद फलन में पूर्णांक गुणांक होते हैं, तो प्रत्येक परिमेय शून्य का रूप होगा, जहां स्थिरांक का एक गुणनखंड है और प्रमुख गुणांक का एक गुणनखंड है.
चरण 2.1.1.2
का प्रत्येक संयोजन पता करें. ये बहुपद फलन के संभावित मूल हैं.
चरण 2.1.1.3
को प्रतिस्थापित करें और व्यंजक को सरल करें. इस स्थिति में, व्यंजक के बराबर है, इसलिए बहुपद का मूल है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.3.1
को बहुपद में प्रतिस्थापित करें.
चरण 2.1.1.3.2
को के घात तक बढ़ाएं.
चरण 2.1.1.3.3
को के घात तक बढ़ाएं.
चरण 2.1.1.3.4
को से गुणा करें.
चरण 2.1.1.3.5
में से घटाएं.
चरण 2.1.1.3.6
को से गुणा करें.
चरण 2.1.1.3.7
और जोड़ें.
चरण 2.1.1.3.8
में से घटाएं.
चरण 2.1.1.4
चूँकि एक ज्ञात मूल है, बहुपद को से भाग देकर भागफल बहुपद ज्ञात करें. इस बहुपद का उपयोग तब शेष मूलों को ज्ञात करने के लिए किया जा सकता है.
चरण 2.1.1.5
को से विभाजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.5.1
बहुपदों को विभाजित करने के लिए सेट करें. यदि प्रत्येक घातांक के लिए कोई पद नहीं है, तो के मान वाला एक शब्द डालें.
--++-
चरण 2.1.1.5.2
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
--++-
चरण 2.1.1.5.3
भाजक से नए भागफल पद को गुणा करें.
--++-
+-
चरण 2.1.1.5.4
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
--++-
-+
चरण 2.1.1.5.5
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
--++-
-+
-
चरण 2.1.1.5.6
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
--++-
-+
-+
चरण 2.1.1.5.7
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
-
--++-
-+
-+
चरण 2.1.1.5.8
भाजक से नए भागफल पद को गुणा करें.
-
--++-
-+
-+
-+
चरण 2.1.1.5.9
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
-
--++-
-+
-+
+-
चरण 2.1.1.5.10
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
-
--++-
-+
-+
+-
-
चरण 2.1.1.5.11
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
-
--++-
-+
-+
+-
-+
चरण 2.1.1.5.12
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
--
--++-
-+
-+
+-
-+
चरण 2.1.1.5.13
भाजक से नए भागफल पद को गुणा करें.
--
--++-
-+
-+
+-
-+
-+
चरण 2.1.1.5.14
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
--
--++-
-+
-+
+-
-+
+-
चरण 2.1.1.5.15
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
--
--++-
-+
-+
+-
-+
+-
+
चरण 2.1.1.5.16
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
--
--++-
-+
-+
+-
-+
+-
+-
चरण 2.1.1.5.17
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
--+
--++-
-+
-+
+-
-+
+-
+-
चरण 2.1.1.5.18
भाजक से नए भागफल पद को गुणा करें.
--+
--++-
-+
-+
+-
-+
+-
+-
+-
चरण 2.1.1.5.19
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
--+
--++-
-+
-+
+-
-+
+-
+-
-+
चरण 2.1.1.5.20
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
--+
--++-
-+
-+
+-
-+
+-
+-
-+
चरण 2.1.1.5.21
चूंकि रिमांडर है, इसलिए अंतिम उत्तर भागफल है.
चरण 2.1.1.6
गुणनखंडों के एक सेट के रूप में लिखें.
चरण 2.1.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.1.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.1.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.1.4
को के रूप में फिर से लिखें.
चरण 2.1.5
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.5.1
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.5.1.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.1.5.1.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.1.5.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3