प्री-कैलकुलस उदाहरण

ऊपरी और निम्न सीमायें ज्ञात कीजिये f(x)=7x-3+2
चरण 1
और जोड़ें.
चरण 2
का प्रत्येक संयोजन पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
यदि एक बहुपद फलन में पूर्णांक गुणांक होते हैं, तो प्रत्येक परिमेय शून्य का रूप होगा, जहां स्थिरांक का एक गुणनखंड है और प्रमुख गुणांक का एक गुणनखंड है.
चरण 2.2
का प्रत्येक संयोजन पता करें. ये बहुपद फलन के संभावित मूल हैं.
चरण 3
पर होने पर कृत्रिम विभाजन लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
  
चरण 3.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
  
चरण 3.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
 
चरण 3.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
 
चरण 3.5
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 4
चूंकि और कृत्रिम विभाजन की निचली पंक्ति में सभी संकेत धनात्मक हैं, फलन की वास्तविक मूल के लिए उच्च परिबंध है.
उच्च परिबंध:
चरण 5
पर होने पर कृत्रिम विभाजन लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
  
चरण 5.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
  
चरण 5.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
 
चरण 5.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
 
चरण 5.5
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 5.6
भागफल बहुपद को सरल करें.
चरण 6
चूंकि और कृत्रिम विभाजन की निचली पंक्ति में संकेत वैकल्पिक संकेत, फलन की वास्तविक मूल के लिए निम्न परिबंध है.
निम्न परिबंध:
चरण 7
पर होने पर कृत्रिम विभाजन लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
  
चरण 7.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
  
चरण 7.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
 
चरण 7.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
 
चरण 7.5
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 8
चूंकि और कृत्रिम विभाजन की निचली पंक्ति में सभी संकेत धनात्मक हैं, फलन की वास्तविक मूल के लिए उच्च परिबंध है.
उच्च परिबंध:
चरण 9
पर होने पर कृत्रिम विभाजन लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
  
चरण 9.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
  
चरण 9.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
 
चरण 9.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
 
चरण 9.5
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 9.6
भागफल बहुपद को सरल करें.
चरण 10
चूंकि और कृत्रिम विभाजन की निचली पंक्ति में संकेत वैकल्पिक संकेत, फलन की वास्तविक मूल के लिए निम्न परिबंध है.
निम्न परिबंध:
चरण 11
ऊपरी और निचली सीमाएँ निर्धारित करें.
उच्च परिबंध:
निम्न परिबंध:
चरण 12