समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
,
चरण 1
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 1.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.2
बाईं ओर को सरल बनाएंं.
चरण 1.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.1.2
को से विभाजित करें.
चरण 1.2.3
दाईं ओर को सरल बनाएंं.
चरण 1.2.3.1
प्रत्येक पद को सरल करें.
चरण 1.2.3.1.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.3.1.2
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2
चरण 2.1
की सभी घटनाओं को में से बदलें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
को सरल करें.
चरण 2.2.1.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1.1
को के रूप में फिर से लिखें.
चरण 2.2.1.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
चरण 2.2.1.1.2.1
वितरण गुणधर्म लागू करें.
चरण 2.2.1.1.2.2
वितरण गुणधर्म लागू करें.
चरण 2.2.1.1.2.3
वितरण गुणधर्म लागू करें.
चरण 2.2.1.1.3
समान पदों को सरल और संयोजित करें.
चरण 2.2.1.1.3.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1.3.1.1
गुणा करें.
चरण 2.2.1.1.3.1.1.1
को से गुणा करें.
चरण 2.2.1.1.3.1.1.2
को से गुणा करें.
चरण 2.2.1.1.3.1.1.3
को से गुणा करें.
चरण 2.2.1.1.3.1.1.4
को से गुणा करें.
चरण 2.2.1.1.3.1.1.5
को से गुणा करें.
चरण 2.2.1.1.3.1.2
गुणा करें.
चरण 2.2.1.1.3.1.2.1
को से गुणा करें.
चरण 2.2.1.1.3.1.2.2
को से गुणा करें.
चरण 2.2.1.1.3.1.3
को के बाईं ओर ले जाएं.
चरण 2.2.1.1.3.1.4
गुणा करें.
चरण 2.2.1.1.3.1.4.1
को से गुणा करें.
चरण 2.2.1.1.3.1.4.2
को से गुणा करें.
चरण 2.2.1.1.3.1.5
को के बाईं ओर ले जाएं.
चरण 2.2.1.1.3.1.6
जोड़ना.
चरण 2.2.1.1.3.1.7
घातांक जोड़कर को से गुणा करें.
चरण 2.2.1.1.3.1.7.1
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.2.1.1.3.1.7.2
और जोड़ें.
चरण 2.2.1.1.3.1.8
को से गुणा करें.
चरण 2.2.1.1.3.2
में से घटाएं.
चरण 2.2.1.1.4
प्रत्येक पद को सरल करें.
चरण 2.2.1.1.4.1
गुणा करें.
चरण 2.2.1.1.4.1.1
और को मिलाएं.
चरण 2.2.1.1.4.1.2
को से गुणा करें.
चरण 2.2.1.1.4.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2.1.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.2.1.3
पदों को सरल करें.
चरण 2.2.1.3.1
और को मिलाएं.
चरण 2.2.1.3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.2.1.3.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.2.1.4
को के बाईं ओर ले जाएं.
चरण 2.2.1.5
पदों को जोड़कर सरल करें.
चरण 2.2.1.5.1
और जोड़ें.
चरण 2.2.1.5.2
पदों को पुन: व्यवस्थित करें
चरण 3
चरण 3.1
दोनों पक्षों को से गुणा करें.
चरण 3.2
सरल करें.
चरण 3.2.1
बाईं ओर को सरल बनाएंं.
चरण 3.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2
व्यंजक को फिर से लिखें.
चरण 3.2.2
दाईं ओर को सरल बनाएंं.
चरण 3.2.2.1
को से गुणा करें.
चरण 3.3
के लिए हल करें.
चरण 3.3.1
समीकरण में प्रतिस्थापित करें. इससे द्विघात सूत्र का उपयोग करना आसान हो जाएगा.
चरण 3.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.3
में से घटाएं.
चरण 3.3.4
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 3.3.4.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.3.4.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.3.5
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.3.6
को के बराबर सेट करें और के लिए हल करें.
चरण 3.3.6.1
को के बराबर सेट करें.
चरण 3.3.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.7
को के बराबर सेट करें और के लिए हल करें.
चरण 3.3.7.1
को के बराबर सेट करें.
चरण 3.3.7.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3.3.9
हल किए गए समीकरण में के वास्तविक मान को वापस प्रतिस्थापित करें.
चरण 3.3.10
के लिए पहला समीकरण हल करें.
चरण 3.3.11
के लिए समीकरण को हल करें.
चरण 3.3.11.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.3.11.2
को सरल करें.
चरण 3.3.11.2.1
को के रूप में फिर से लिखें.
चरण 3.3.11.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.3.11.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.11.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.3.11.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.3.11.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.12
का मान ज्ञात करने के लिए दूसरा समीकरण हल करें.
चरण 3.3.13
के लिए समीकरण को हल करें.
चरण 3.3.13.1
कोष्ठक हटा दें.
चरण 3.3.13.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.3.13.3
को सरल करें.
चरण 3.3.13.3.1
को के रूप में फिर से लिखें.
चरण 3.3.13.3.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.3.13.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.13.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.3.13.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.3.13.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.14
का हल है.
चरण 4
चरण 4.1
की सभी घटनाओं को में से बदलें.
चरण 4.2
दाईं ओर को सरल बनाएंं.
चरण 4.2.1
को सरल करें.
चरण 4.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.2.1.2
व्यंजक को सरल बनाएंं.
चरण 4.2.1.2.1
को के घात तक बढ़ाएं.
चरण 4.2.1.2.2
और जोड़ें.
चरण 4.2.1.2.3
को से विभाजित करें.
चरण 5
चरण 5.1
की सभी घटनाओं को में से बदलें.
चरण 5.2
दाईं ओर को सरल बनाएंं.
चरण 5.2.1
को सरल करें.
चरण 5.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 5.2.1.2
व्यंजक को सरल बनाएंं.
चरण 5.2.1.2.1
को के घात तक बढ़ाएं.
चरण 5.2.1.2.2
और जोड़ें.
चरण 5.2.1.2.3
को से विभाजित करें.
चरण 6
चरण 6.1
की सभी घटनाओं को में से बदलें.
चरण 6.2
दाईं ओर को सरल बनाएंं.
चरण 6.2.1
को सरल करें.
चरण 6.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.1.2
व्यंजक को सरल बनाएंं.
चरण 6.2.1.2.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2.2
और जोड़ें.
चरण 6.2.1.2.3
को से विभाजित करें.
चरण 7
चरण 7.1
की सभी घटनाओं को में से बदलें.
चरण 7.2
दाईं ओर को सरल बनाएंं.
चरण 7.2.1
को सरल करें.
चरण 7.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.2.1.2
व्यंजक को सरल बनाएंं.
चरण 7.2.1.2.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2.2
और जोड़ें.
चरण 7.2.1.2.3
को से विभाजित करें.
चरण 8
चरण 8.1
की सभी घटनाओं को में से बदलें.
चरण 8.2
दाईं ओर को सरल बनाएंं.
चरण 8.2.1
को सरल करें.
चरण 8.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 8.2.1.2
व्यंजक को सरल बनाएंं.
चरण 8.2.1.2.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2.2
और जोड़ें.
चरण 8.2.1.2.3
को से विभाजित करें.
चरण 9
चरण 9.1
की सभी घटनाओं को में से बदलें.
चरण 9.2
दाईं ओर को सरल बनाएंं.
चरण 9.2.1
को सरल करें.
चरण 9.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.2.1.2
व्यंजक को सरल बनाएंं.
चरण 9.2.1.2.1
को के घात तक बढ़ाएं.
चरण 9.2.1.2.2
और जोड़ें.
चरण 9.2.1.2.3
को से विभाजित करें.
चरण 10
चरण 10.1
की सभी घटनाओं को में से बदलें.
चरण 10.2
दाईं ओर को सरल बनाएंं.
चरण 10.2.1
को सरल करें.
चरण 10.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 10.2.1.2
व्यंजक को सरल बनाएंं.
चरण 10.2.1.2.1
को के घात तक बढ़ाएं.
चरण 10.2.1.2.2
और जोड़ें.
चरण 10.2.1.2.3
को से विभाजित करें.
चरण 11
चरण 11.1
की सभी घटनाओं को में से बदलें.
चरण 11.2
दाईं ओर को सरल बनाएंं.
चरण 11.2.1
को सरल करें.
चरण 11.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 11.2.1.2
व्यंजक को सरल बनाएंं.
चरण 11.2.1.2.1
को के घात तक बढ़ाएं.
चरण 11.2.1.2.2
और जोड़ें.
चरण 11.2.1.2.3
को से विभाजित करें.
चरण 12
चरण 12.1
की सभी घटनाओं को में से बदलें.
चरण 12.2
दाईं ओर को सरल बनाएंं.
चरण 12.2.1
को सरल करें.
चरण 12.2.1.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 12.2.1.2
व्यंजक को सरल बनाएंं.
चरण 12.2.1.2.1
को के घात तक बढ़ाएं.
चरण 12.2.1.2.2
और जोड़ें.
चरण 12.2.1.2.3
को से विभाजित करें.
चरण 13
सिस्टम का हल क्रमित युग्म का पूरा सेट है जो मान्य हल हैं.
चरण 14
परिणाम कई रूपों में दिखाया जा सकता है.
बिन्दू रूप:
समीकरण रूप:
चरण 15