प्री-कैलकुलस उदाहरण

खण्डो के रुप मे निरपेक्ष मान को लिखिये |x^2+4x+4|
चरण 1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 2
असमानता को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
असमानता को समीकरण में बदलें.
चरण 2.2
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 2.2.3
बहुपद को फिर से लिखें.
चरण 2.2.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 2.3
को के बराबर सेट करें.
चरण 2.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 2.6
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 2.6.1.2
मूल असमानता में को से बदलें.
चरण 2.6.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 2.6.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 2.6.2.2
मूल असमानता में को से बदलें.
चरण 2.6.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 2.6.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
सही
सही
चरण 2.7
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 2.8
अंतराल को जोड़ें.
सभी वास्तविक संख्या
सभी वास्तविक संख्या
चरण 3
चूँकि कभी भी ऋणात्मक नहीं होता, निरपेक्ष मान को हटाया जा सकता है.