समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
चरण 1
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 2
चरण 2.1
का सटीक मान है.
चरण 3
चरण 3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
चरण 3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2
को से विभाजित करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 3.3.2
गुणा करें.
चरण 3.3.2.1
को से गुणा करें.
चरण 3.3.2.2
को से गुणा करें.
चरण 4
दूसरे और चौथे चतुर्थांश में स्पर्शरेखा फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, तीसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 5
चरण 5.1
को में जोड़ें.
चरण 5.2
का परिणामी कोण के साथ धनात्मक और कोटरमिनल है.
चरण 5.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2
को से विभाजित करें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 5.3.3.2
गुणा करें.
चरण 5.3.3.2.1
को से गुणा करें.
चरण 5.3.3.2.2
को से गुणा करें.
चरण 6
चरण 6.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 6.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 6.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7
चरण 7.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 7.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 7.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
चरण 7.3.1
को से गुणा करें.
चरण 7.3.2
को से गुणा करें.
चरण 7.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.5
न्यूमेरेटर को सरल करें.
चरण 7.5.1
को के बाईं ओर ले जाएं.
चरण 7.5.2
में से घटाएं.
चरण 7.6
नए कोणों की सूची बनाएंं.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 9
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए