प्री-कैलकुलस उदाहरण

xを解きます x-7+ के लघुगणक बेस 5 x-4- के लघुगणक बेस 5 x=1 के लघुगणक बेस 5
चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
लघुगणक की गुणनफल गुणधर्म, का उपयोग करें.
चरण 1.2
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3
भिन्न को हटाने के लिए क्रॉस गुणा करें.
चरण 4
को से गुणा करें.
चरण 5
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 5.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
वितरण गुणधर्म लागू करें.
चरण 5.2.1.2
वितरण गुणधर्म लागू करें.
चरण 5.2.1.3
वितरण गुणधर्म लागू करें.
चरण 5.2.2
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1.1
को से गुणा करें.
चरण 5.2.2.1.2
को के बाईं ओर ले जाएं.
चरण 5.2.2.1.3
को से गुणा करें.
चरण 5.2.2.2
में से घटाएं.
चरण 5.3
में से घटाएं.
चरण 6
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 6.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 7
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
वितरण गुणधर्म लागू करें.
चरण 7.1.2
वितरण गुणधर्म लागू करें.
चरण 7.1.3
वितरण गुणधर्म लागू करें.
चरण 7.2
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को से गुणा करें.
चरण 7.2.1.2
को के बाईं ओर ले जाएं.
चरण 7.2.1.3
को से गुणा करें.
चरण 7.2.2
में से घटाएं.
चरण 8
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 8.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 9
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 10
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को के बराबर सेट करें.
चरण 10.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 11
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
को के बराबर सेट करें.
चरण 11.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 12
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 13
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.