प्री-कैलकुलस उदाहरण

चरण 1
समीकरण में प्रतिस्थापित करें. इससे द्विघात सूत्र का उपयोग करना आसान हो जाएगा.
चरण 2
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को से गुणा करें.
चरण 4.1.2.2
को से गुणा करें.
चरण 4.1.3
और जोड़ें.
चरण 4.2
को से गुणा करें.
चरण 5
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 6
हल किए गए समीकरण में के वास्तविक मान को वापस प्रतिस्थापित करें.
चरण 7
के लिए पहला समीकरण हल करें.
चरण 8
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 8.2
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 8.2.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 8.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 9
का मान ज्ञात करने के लिए दूसरा समीकरण हल करें.
चरण 10
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
कोष्ठक हटा दें.
चरण 10.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 10.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
को के रूप में फिर से लिखें.
चरण 10.3.2
को के रूप में फिर से लिखें.
चरण 10.3.3
को के रूप में फिर से लिखें.
चरण 10.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 10.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 10.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 10.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 11
का हल है.