समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
Step 1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
Step 2
का सटीक मान है.
Step 3
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 4
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
Step 5
सरल करें.
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
को से गुणा करें.
में से घटाएं.
के प्रत्येक पद को से भाग दें और सरल करें.
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 6
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
Step 7
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए