प्री-कैलकुलस उदाहरण

अनंतस्‍पर्शी रेखाओं का पता लगाओ (x^3-5x)/(x^2+1)
चरण 1
पता करें कि व्यंजक/अभिव्यक्ति कहाँ अपरिभाषित है.
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 2
ऊर्ध्वाधर अनंतस्पर्शी अनंत असंबद्धता वाले क्षेत्रों में पाए जाते हैं.
कोई ऊर्ध्वाधर अनंतस्पर्शी नहीं
चरण 3
परिमेय फलन पर विचार करें जहां न्यूमेरेटर की घात है और भाजक की घात है.
1. यदि , तो x-अक्ष, , हॉरिजॉन्टल ऐसिम्प्टोट है.
2. यदि है, तो हॉरिजॉन्टल ऐसिम्प्टोट रेखा है.
3. यदि है, तो कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं है (एक तिरछी अनंतस्पर्शी है).
चरण 4
और पता करें.
चरण 5
चूंकि , कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं है.
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
चरण 6
बहुपद भाजन का उपयोग करके तिरछी अनंतस्पर्शी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
में से का गुणनखंड करें.
चरण 6.1.2
में से का गुणनखंड करें.
चरण 6.1.3
में से का गुणनखंड करें.
चरण 6.2
का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
वितरण गुणधर्म लागू करें.
चरण 6.2.2
और को पुन: क्रमित करें.
चरण 6.2.3
को के घात तक बढ़ाएं.
चरण 6.2.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.2.5
और जोड़ें.
चरण 6.3
बहुपदों को विभाजित करने के लिए सेट करें. यदि प्रत्येक घातांक के लिए कोई पद नहीं है, तो के मान वाला एक शब्द डालें.
+++-+
चरण 6.4
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
+++-+
चरण 6.5
भाजक से नए भागफल पद को गुणा करें.
+++-+
+++
चरण 6.6
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
+++-+
---
चरण 6.7
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
+++-+
---
-
चरण 6.8
मूल भाज्य से अगले पद को वर्तमान लाभांश में नीचे खींचें.
+++-+
---
-+
चरण 6.9
अंतिम उत्तर भागफल और भाजक पर शेषफल है.
चरण 6.10
तिरछी अनंतस्पर्शी दीर्घ विभाजन परिणाम का लंबा भाग है.
चरण 7
यह सभी अनंतस्पर्शी का सेट है.
कोई ऊर्ध्वाधर अनंतस्पर्शी नहीं
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
तिरछी अनंतस्पर्शी:
चरण 8