प्री-कैलकुलस उदाहरण

प्रांत ज्ञात कीजिऐ f(x)=(11-2x)/(2x^2-13x-7)
चरण 1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
में से का गुणनखंड करें.
चरण 2.1.1.2
को जोड़ के रूप में फिर से लिखें
चरण 2.1.1.3
वितरण गुणधर्म लागू करें.
चरण 2.1.1.4
को से गुणा करें.
चरण 2.1.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.1.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.1.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.2.1.2
को से विभाजित करें.
चरण 2.3.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 4