प्री-कैलकुलस उदाहरण

प्रांत ज्ञात कीजिऐ (2a+b)/(2a^2-ab)-(16a)/(4a^2-b^2)-(2a-b)/(2a^2+ab)
चरण 1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
में से का गुणनखंड करें.
चरण 2.1.2
में से का गुणनखंड करें.
चरण 2.1.3
में से का गुणनखंड करें.
चरण 2.2
को के रूप में फिर से लिखें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.2.1.2
को से विभाजित करें.
चरण 2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.2
को से विभाजित करें.
चरण 4.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 4.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
को के रूप में फिर से लिखें.
चरण 4.4.2
को के रूप में फिर से लिखें.
चरण 4.4.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 4.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
में से का गुणनखंड करें.
चरण 6.1.2
में से का गुणनखंड करें.
चरण 6.1.3
में से का गुणनखंड करें.
चरण 6.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 6.3
को के बराबर सेट करें.
चरण 6.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
को के बराबर सेट करें.
चरण 6.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.4.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.4.2.2.2.1.2
को से विभाजित करें.
चरण 6.4.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 7
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन: