प्री-कैलकुलस उदाहरण

प्रांत ज्ञात कीजिऐ f(x)=1/( |x|-x) का वर्गमूल
चरण 1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को अलग-अलग लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 2.1.2
उस हिस्से में जहां गैर-ऋणात्मक है, निरपेक्ष मान हटा दें.
चरण 2.1.3
दूसरे अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, यह पता लगाएं कि निरपेक्ष मान का आंतरिक भाग ऋणात्मक है.
चरण 2.1.4
उस हिस्से में जहां ऋणात्मक है, निरपेक्ष मान हटा दें और से गुणा करें.
चरण 2.1.5
अलग-अलग रूप में लिखें.
चरण 2.1.6
में से घटाएं.
चरण 2.1.7
में से घटाएं.
चरण 2.2
को हल करें जब हो.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , समीकरण हमेशा सत्य होगा.
हमेशा सत्य
चरण 2.2.2
प्रतिच्छेदन पता करें.
चरण 2.3
को हल करें जब हो.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 2.3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.2.1.2
को से विभाजित करें.
चरण 2.3.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.3.1
को से विभाजित करें.
चरण 2.3.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 2.4
हलों का संघ ज्ञात करें.
सभी वास्तविक संख्या
सभी वास्तविक संख्या
चरण 3
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 4.2
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 4.2.2.1.2
सरल करें.
चरण 4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.4
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 4.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.5.2
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 4.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.5.2.2
में से घटाएं.
चरण 4.5.3
चूंकि , समीकरण हमेशा सत्य होगा.
हमेशा सत्य
चरण 4.5.4
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.5.5
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 4.5.5.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.5.5.2
और जोड़ें.
चरण 4.5.6
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.6.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.5.6.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.5.6.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.6.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.5.6.2.1.2
को से विभाजित करें.
चरण 4.5.6.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.5.6.3.1
को से विभाजित करें.
चरण 4.5.7
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4.6
प्रत्येक हल को में प्रतिस्थापित करके और हल करके सत्यापित करें.
चरण 5
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 6