प्री-कैलकुलस उदाहरण

प्रांत ज्ञात कीजिऐ f(x)=(2x^2-3)/(x^3+3x^2+3x+1)
चरण 1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
पदों को फिर से समूहित करें.
चरण 2.1.2
को के रूप में फिर से लिखें.
चरण 2.1.3
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के योग का उपयोग करके गुणनखंड करें, जहाँ और .
चरण 2.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
को से गुणा करें.
चरण 2.1.4.2
एक का कोई भी घात एक होता है.
चरण 2.1.5
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.5.1
में से का गुणनखंड करें.
चरण 2.1.5.2
में से का गुणनखंड करें.
चरण 2.1.5.3
में से का गुणनखंड करें.
चरण 2.1.6
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.6.1
में से का गुणनखंड करें.
चरण 2.1.6.2
में से का गुणनखंड करें.
चरण 2.1.7
और जोड़ें.
चरण 2.1.8
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.8.1
को के रूप में फिर से लिखें.
चरण 2.1.8.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 2.1.8.3
बहुपद को फिर से लिखें.
चरण 2.1.8.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.4
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 4